

 Problems in recovery procedure as discussed
earlier :
1. searching the entire log is time-consuming

2. we might unnecessarily redo transactions which have
already

3. output their updates to the database.

 Streamline recovery procedure by periodically
performing checkpointing
1. Output all log records currently residing in main

memory onto stable storage.

2. Output all modified buffer blocks to the disk.

3. Write a log record < checkpoint> onto stable storage.

 During recovery we need to consider only the
most recent transaction Ti that started before the
checkpoint, and transactions that started after Ti.
1. Scan backwards from end of log to find the most recent

<checkpoint> record
2. Continue scanning backwards till a record <Ti start> is

found.
3. Need only consider the part of log following above start

record. Earlier part of log can be ignored during
recovery, and can be erased whenever desired.

4. For all transactions (starting from Ti or later) with no
<Ti commit>, execute undo(Ti). (Done only in case of
immediate modification.)

5. Scanning forward in the log, for all transactions
starting from Ti or later with a <Ti commit>,
execute redo(Ti).

 T1 can be ignored (updates already output to disk
due to checkpoint)

 T2 and T3 redone.

 T4 undone

Tc Tf

T1

T2

T3

T4

checkpoint system failure

 Shadow paging is an alternative to log-based
recovery; this scheme is useful if transactions
execute serially

 Idea: maintain two page tables during the lifetime of
a transaction –the current page table, and the
shadow page table

 Store the shadow page table in nonvolatile storage,
such that state of the database prior to transaction
execution may be recovered.
◦ Shadow page table is never modified during execution

 To start with, both the page tables are identical. Only
current page table is used for data item accesses
during execution of the transaction.

 Whenever any page is about to be written for the first
time
◦ A copy of this page is made onto an unused page.
◦ The current page table is then made to point to the copy
◦ The update is performed on the copy

Shadow and current page tables after write to page 4

 To commit a transaction :
 1. Flush all modified pages in main memory to

disk
 2. Output current page table to disk
 3. Make the current page table the new shadow

page table, as follows:
◦ keep a pointer to the shadow page table at a fixed

(known) location on disk.
◦ to make the current page table the new shadow page

table, simply update the pointer to point to current page
table on disk

 Once pointer to shadow page table has been
written, transaction is committed.

 No recovery is needed after a crash — new
transactions can start right away, using the
shadow page table.

 Pages not pointed to from current/shadow page
table should be freed (garbage collected).

 Advantages of shadow-paging over log-based schemes
◦ no overhead of writing log records
◦ recovery is trivial

 Disadvantages :
◦ Copying the entire page table is very expensive
 Can be reduced by using a page table structured like a B+-tree

 No need to copy entire tree, only need to copy paths in the tree that
lead to updated leaf nodes

◦ Commit overhead is high even with above extension
 Need to flush every updated page, and page table

◦ Data gets fragmented (related pages get separated on disk)
◦ After every transaction completion, the database pages

containing old versions of modified data need to be garbage
collected

◦ Hard to extend algorithm to allow transactions to run
concurrently
 Easier to extend log based schemes

 We modify the log-based recovery schemes to allow multiple
transactions to execute concurrently.

◦ All transactions share a single disk buffer and a single log

◦ A buffer block can have data items updated by one or more transactions

 We assume concurrency control using strict two-phase locking;

◦ i.e. the updates of uncommitted transactions should not be visible to other
transactions

 Otherwise how to perform undo if T1 updates A, then T2 updates A and
commits, and finally T1 has to abort?

 Logging is done as described earlier.

◦ Log records of different transactions may be interspersed in the log.

 The checkpointing technique and actions taken on recovery have to
be changed

◦ since several transactions may be active when a checkpoint is performed.

 Checkpoints are performed as before, except that
the checkpoint log record is now of the form
 < checkpoint L>
where L is the list of transactions active at the
time of the checkpoint
◦ We assume no updates are in progress while the

checkpoint is carried out (will relax this later)
 When the system recovers from a crash, it first

does the following:
1. Initialize undo-list and redo-list to empty
2. Scan the log backwards from the end, stopping when

the first <checkpoint L> record is found.
For each record found during the backward scan:
 if the record is <Ti commit>, add Ti to redo-list
 if the record is <Ti start>, then if Ti is not in redo-list,

add Ti to undo-list
3. For every Ti in L, if Ti is not in redo-list, add Ti to undo-

list

 At this point undo-list consists of incomplete
transactions which must be undone, and redo-list
consists of finished transactions that must be redone.

 Recovery now continues as follows:
1. Scan log backwards from most recent record, stopping

when
<Ti start> records have been encountered for every Ti in
undo-list.
 During the scan, perform undo for each log record that

belongs to a transaction in undo-list.
2. Locate the most recent <checkpoint L> record.
3. Scan log forwards from the <checkpoint L> record till the

end of the log.
 During the scan, perform redo for each log record that

belongs to a transaction on redo-list

 Go over the steps of the recovery algorithm
on the following log:

<T0 start>
<T0, A, 0, 10>
<T0 commit>
<T1 start>
<T1, B, 0, 10>
<T2 start> /* Scan in Step 4 stops here */
<T2, C, 0, 10>
<T2, C, 10, 20>
<checkpoint {T1, T2}>
<T3 start>
<T3, A, 10, 20>
<T3, D, 0, 10>
<T3 commit>

 Log record buffering: log records are
buffered in main memory, instead of of
being output directly to stable storage.
◦ Log records are output to stable storage when a

block of log records in the buffer is full, or a log
force operation is executed.

 Log force is performed to commit a
transaction by forcing all its log records
(including the commit record) to stable
storage.

 Several log records can thus be output using
a single output operation, reducing the I/O
cost.

 The rules below must be followed if log
records are buffered:
◦ Log records are output to stable storage in the

order in which they are created.
◦ Transaction Ti enters the commit state only when

the log record
<Ti commit> has been output to stable storage.

◦ Before a block of data in main memory is output to
the database, all log records pertaining to data in
that block must have been output to stable storage.
 This rule is called the write-ahead logging or WAL rule
 Strictly speaking WAL only requires undo information to

be output

 Database maintains an in-memory buffer of data
blocks
◦ When a new block is needed, if buffer is full an existing

block needs to be removed from buffer
◦ If the block chosen for removal has been updated, it must

be output to disk
 As a result of the write-ahead logging rule, if a block

with uncommitted updates is output to disk, log
records with undo information for the updates are
output to the log on stable storage first.

 No updates should be in progress on a block when it
is output to disk. Can be ensured as follows.
◦ Before writing a data item, transaction acquires exclusive

lock on block containing the data item
◦ Lock can be released once the write is completed.
 Such locks held for short duration are called latches.

◦ Before a block is output to disk, the system acquires an
exclusive latch on the block
 Ensures no update can be in progress on the block

 Database buffer can be implemented either
◦ in an area of real main-memory reserved for the

database, or

◦ in virtual memory

 Implementing buffer in reserved main-memory
has drawbacks:
◦ Memory is partitioned before-hand between database

buffer and applications, limiting flexibility.

◦ Needs may change, and although operating system
knows best how memory should be divided up at any
time, it cannot change the partitioning of memory.

 Database buffers are generally implemented in
virtual memory in spite of some drawbacks:
◦ When operating system needs to evict a page that has

been modified, to make space for another page, the
page is written to swap space on disk.

◦ When database decides to write buffer page to disk,
buffer page may be in swap space, and may have to
be read from swap space on disk and output to the
database on disk, resulting in extra I/O!
 Known as dual paging problem.

◦ Ideally when swapping out a database buffer page,
operating system should pass control to database,
which in turn outputs page to database instead of to
swap space (making sure to output log records first)
 Dual paging can thus be avoided, but common operating

systems do not support such functionality.

 So far we assumed no loss of non-volatile storage

 Technique similar to checkpointing used to deal with loss of non-
volatile storage
◦ Periodically dump the entire content of the database to stable storage

◦ No transaction may be active during the dump procedure; a procedure
similar to checkpointing must take place

 Output all log records currently residing in main memory onto
stable storage.

 Output all buffer blocks onto the disk.

 Copy the contents of the database to stable storage.

 Output a record <dump> to log on stable storage.

◦ To recover from disk failure

 restore database from most recent dump.

 Consult the log and redo all transactions that committed after the
dump

 Can be extended to allow transactions to be active during dump;
known as fuzzy dump or online dump
◦ Will study fuzzy checkpointing later

